
PRL @ Northeastern UniversityMichael Ballantyne

Building a path from language user to
sophisticated DSL creator in Racket

An extensible language
for language-oriented
programming.

{"results": [42]} 42

r1.json r1.json
#lang rash

(require match json)

(define (fix-file f)
 (write-json-file
 (match (read-json-file f)
 [(json { "results" [v] }) v]
 [v v])
 f))

find . -name *.json |>each-line fix-file

{"results": [3.7]} 3.7

exp2/r5.json exp2/r5.json

Racket

Rash match

json pattern

#lang rash

(require match json)

(define (fix-file f)
 (write-json-file
 (match (read-json-file f)
 [(json { "results" [v] }) v]
 [v v])
 f))

find . -name *.json |>each-line fix-file

|>each-line

How we build DSLs in Racket, via two techniques:
• “Macro-embedded DSLs”
• “Hosted DSLs”

Making sophisticated “hosted” DSLs easier to build:
• A new API for re-using parts of Racket’s macro expander to

build custom macro expanders for DSLs
• A new meta-language for creating hosted DSL front-ends

 (Work in progress)

 Work with Matthias Felleisen and Alexis King

This talk

Language sophistication

Programmer
Expertise

Syntactic sugar

“Macro-embedded DSLs”:
embedded DSLs with macro syntax

“Hosted DSLs” with non-local
analysis and optimization

The path from programmer to DSL creator

Syntactic sugar via macros

(define (append l1 l2)
 (cond [(null? l1) l2]
 [(pair? l1)
 (let ([head (car l1)] [rest (cdr l1)])
 (cons head (append rest l2)))]))

(require "match-list.rkt")

(define (append l1 l2)
 (match-list l1
 [() l2]
 [(head rest) (cons head (append rest l2))]))

(define (append l1 l2)
 (cond [(null? l1) l2]
 [(pair? l1)
 (let ([head (car l1)] [rest (cdr l1)])
 (cons head (append rest l2)))]))

Defining match-list
#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Syntax definition Syntax export

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Syntax -> Syntax transformer function

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Import the syntax-parse meta-language for compile-time

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Pattern Template

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Runtime support for the language feature

#lang racket

(provide match-list)
(require (for-syntax syntax/parse))

(define (match-list-error) (error 'match-list […]))

(define-syntax match-list
 (lambda (stx)
 (syntax-parse stx
 [(_ e
 [() null-body ...+]
 [(head tail) pair-body ...+])
 #'(let ([v e])
 (cond [(null? v) null-body ...]
 [(pair? v) (let ([head (car v)] [tail (cdr v)])
 pair-body ...)]
 [else (match-list-error)]))])))

Programmer
Expertise

Syntactic sugar

“Macro-embedded DSLs”:
embedded DSLs with macro syntax

“Hosted DSLs” with non-local
analysis and optimization

Language sophistication

Macro-embedded DSLs

#lang racket

(require minikanren)

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (== (cons first result) l3)
 (append rest l2 result))]))

(run 3 (l1 l2)
 (append l1 l2 '("a" "b")))
=> ;; evaluates to
((("a" "b") ())
 (("a") ("b"))
 (() ("a" "b"))

An example DSL: miniKanren

#lang racket

(require minikanren)

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (== (cons first result) l3)
 (append rest l2 result))]))

Functions

Embedding

#lang racket

(require minikanren)

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (== (cons first result) l3)
 (append rest l2 result))]))

Reuse of Racket

Embedding

#lang racket

(require minikanren)

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (== (cons first result) l3)
 (append rest l2 result))]))

Macros

Embedding

#lang racket

(require minikanren)

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (== (cons first result) l3)
 (append rest l2 result))]))

(define-syntax conde
 (lambda (stx)
 (syntax-parse stx
 [(_ [g:goal ...+] ...+)
 #'(disj
 (lambda ()
 (conj g ...))
 …)])))

Consequences of macro-embedding

(define-relation (naturals v)
 (loop recur ([n 0])
 (conde
 [(== v n)]
 [(recur (+ n 1))]))

Mixing with host-language code

(define-relation (naturals v)
 (loop recur ([n 0])
 (conde
 [(== v n)]
 [(recur (+ n 1))]))

But can easily break the DSL’s semantics.

Mixing with host-language code

Useful when exploring extensions…

#lang racket

(require minikanren)

(define-syntax define-relation/match
 (lambda (stx)
 …))

(define-relation/match (append l1 l2 l3)
 [('() _ _)
 (== l2 l3)]
 [((cons first rest) _ (cons first result))
 (append rest l2 result)])

Extension using host-language macros

Easy! Just functions and some lightweight
macros.

To use the language, just import the library.

Can mix with host-language code.

Can extend with host-language macros.

Programmer
Expertise

Syntactic sugar

“Macro-embedded DSLs”:
embedded DSLs with macro syntax

“Hosted DSLs” with non-local
analysis and optimization

Language sophistication

Custom:
• Grammar
• Binding structure
• Static semantics
• Optimizations

All non-local.

Macro-embedding only gives us what we can scrounge
from the host language.

More sophisticated DSLs

How to support these custom, non-local features…

While keeping:
• Integration between DSLs and host
• “Languages as libraries”
• DSL extensibility via macros

More sophisticated DSLs

Hosted DSLs

Use a traditional compiler,
but connected to the host-language
macro system.

Racket
Core

Racket
Compiler

Racket
ExpanderRacket x86

Racket
Core

Racket
Compiler

Racket
ExpanderRacket x86

DSL
Compiler

DSL
Expander RacketDSL

CoreDSL

Racket
Core

Racket
Compiler

Racket
ExpanderRacket x86

DSL
Compiler

DSL
Expander RacketDSL

CoreDSL

(define (f x)

)

Racket
Compiler

Racket
Expander

(define (f x)
 (match x
 [

 …])

x86

DSL
Compiler

DSL
Expander

(if (hash? x)
 …)(hash-table …)(json {…})

(json {…})
(if (hash? x)
 …)

term := literal
 | lvar
 | (cons term term)

goal := (== term term)
 | (fresh1 (lvar ...) goal)
 | (disj2 goal goal)
 | (conj2 goal goal)
 | (relname term ...)

miniKanren core language

term := literal
 | lvar
 | (cons term term)

goal := (== term term)
 | (fresh1 (lvar ...) goal)
 | (disj2 goal goal)
 | (conj2 goal goal)
 | (relname term ...)

miniKanren core language
term := ...
 | (quasiquote quoted)

goal := ...
 | (fresh (lvar ...) goal ...)
 | (conde [goal ...] ...)

miniKanren syntactic sugar

term := literal
 | lvar
 | (cons term term)

goal := (== term term)
 | (fresh1 (lvar ...) goal)
 | (disj2 goal goal)
 | (conj2 goal goal)
 | (relname term ...)

racket-def := ...
 | (define-relation (relname lvar ...) goal)

racket-exp := ...
 | (run n (lvar ...) goal)

term := ...
 | (quasiquote quoted)

goal := ...
 | (fresh (lvar ...) goal ...)
 | (conde [goal ...] ...)

miniKanren core language

Racket “interface macros”

miniKanren syntactic sugar

(define-relation (append l1 l2 l3)
 (conde
 [(== l1 '())
 (== l2 l3)]
 [(fresh (first rest result)
 (== (cons first rest) l1)
 (append rest l2 result)
 (== (cons first result) l3))]))

(fresh1 (first rest result)
 (conj2
 (conj2 (== (cons first rest) l1)
 (append rest l2 result))
 (== (cons first result) l3)))))

(fresh (first rest result)
 (== (cons first rest) l1)
 (append rest l2 result)
 (== (cons first result) l3))

Expand

Compile
< Racket code >

(fresh1 (first rest result)
 (conj2
 (conj2 (== (cons first rest) l1)
 (append rest l2 result))
 (== (cons first result) l3)))))

(fresh (first rest result)
 (== (cons first rest) l1)
 (append rest l2 result)
 (== (cons first result) l3))

Expand

(fresh1 (first rest result)
 (conj2
 (conj2 (== (cons first rest) l1)
 (== (cons first result) l3))
 (append rest l2 result)))))

Transform

Compile
< Racket code >

(Improve search behavior)

• Enforced DSL grammar
 miniKanren terms and goals are separated
• Enforced DSL static semantics

 Relation arity
• Domain-specific analysis and transformation

 Unification lifting

Benefits:

Integration Between Languages

(define-relation (naturals v)
 (loop recur ([n 0])
 (conde
 [(== v n)]
 [(recur (+ n 1))]))

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Integration Between Languages

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Integration Between Languages

Relation body scope

loop body scope

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Integration Between Languages

Relation body scope

loop body scope

Cross-language
name reference

Scopes, Hygiene, Expander environment, Modules

Racket miniKanren Rash match …Expanders:

Shared layer:

Separate out and expose the
language-independent parts of Racket’s
expander, and reuse them in DSL expanders.

Scopes, Hygiene, Expander environment, Modules

Racket miniKanren Rash match …Expanders:

Shared layer:

New API to make this shared layer easy to reuse.

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Reuse: Scope

{r} v

{r, l} n

n

v

l

r

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

(define-relation (naturals v)

 (racket

 (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))])))))

expOk(s_r, (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))]))))

s_r v

(define-relation (naturals v)

 (racket

 (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))])))))

expOk(s_r, (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))]))))

s_r v

s_l n
n

v

(define-relation (naturals v)

 (racket

 (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))])))))

{r} v

r

expOk(s_r, (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))]))))

s_r v

s_l n
n

v

(expand #'(loop recur ([n_{r} 0])

 (mkgoal

 (conde

 [(== v_{r} n)]

 [(racket (recur (+ n_{r} 1)))]))))

(define-relation (naturals v)

 (racket

 (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))])))))

{r} v

{r, l} n

n

v

l

r

expOk(s_r, (loop recur ([n 0])

 (mkgoal

 (conde

 [(== v n)]

 [(racket (recur (+ n 1)))]))))

s_r v

s_l n
n

v

(expand #'(loop recur ([n_{r} 0])

 (mkgoal

 (conde

 [(== v_{r} n)]

 [(racket (recur (+ n_{r} 1)))]))))

=>

#'(loop recur ([n_{r,l} 0])

 (mkgoal

 (conde

 [(== v_{r,l} n)]

 [(racket (recur (+ n_{r,l} 1)))])))

We want programmers to be able to
extend both Racket and DSLs with
macros.

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

Expansion…
• Moves syntax between scopes and modules
• Combines syntax from different origins

Like the need to avoid capture in λ substitution, but more subtle.

We want programmers to be able to
extend both Racket and DSLs with
macros.

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

Expansion…
• Moves syntax between scopes and modules
• Combines syntax from different origins

Like the need to avoid capture in λ substitution, but more subtle.

Automatic hygiene motivates Racket’s model of scope.

We want programmers to be able to
extend both Racket and DSLs with
macros.

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

What if loop is defined by a macro?

(loop recur ([x init]) b)
->
(let ([v init])
 (letrec ([recur (lambda (x) b)])
 (recur v)))

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

(define-relation (naturals v)
 (racket
 (let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))))

Expands to

What if loop is defined by a macro?

(loop recur ([x init]) b)
->
(let ([v init])
 (letrec ([recur (lambda (x) b)])
 (recur v)))

(define-relation (naturals v)
 (racket
 (loop recur ([n 0])
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))))

Scope in the presence of macros: hygiene

(define-relation (naturals v)
 (racket
 (let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))))

Expands to

?
?

What if loop is defined by a macro?

(loop recur ([x init]) b)
->
(let ([v init])
 (letrec ([recur (lambda (x) b)])
 (recur v)))

(define-relation (naturals v)
 (racket
 (let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))))

?
?

(let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))

(let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))]))])
 (recur v)))

From the use-site From the macro definition

(define-relation (naturals v)
 (racket
 (let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))))

?

?

{r} v

{r, u, l} n

l

r

{r, u} {r, d}

{r, d, l}

u d

v

l

v
n

(define-relation (naturals v)
 (racket
 (let ([v 0])
 (letrec ([recur
 (lambda (n)
 (mkgoal
 (conde
 [(== v n)]
 [(racket (recur (+ n 1)))])))])
 (recur v)))))

• Scope:
 (with-scope s_let …)
 (add-scope #'body s_let)
• Binding:
 (bind! #'x (lvar))
 (lookup #'x)
• Hygiene:
 (apply-as-transformer f arg …)

• Scope:
 new s_let
 s_let -P-> s
• Binding:
 !lvar[x] in s_let
 x in s_let |-> [(_,_)]

Statix extDSL API

(Break and questions)

define ->
 (rkt-macro #<procedure>)
x ->
 (racket-var)

(define x 5)
; ->
(define-values (x) 5)
x

Reuse: Expander Environment

define ->
 (rkt-macro #<procedure>)
x ->
 (racket-var)
conde ->
 (goal-macro #<procedure>)
append ->
 (relation 3)
l1, l2, l3 ->
 (lvar)

(define x 5)
; ->
(define-values (x) 5)
x

(define-relation (append l1 l2 l3)
 (conde
 …))

(run* (l1 l2)
 (append l1 l2 '(1 2)))

Reuse: Expander Environment

append ->
 (relation 3)

(provide append)
(define-relation (append l1 l2 l3)
 …)

mk/lists

Expander Environment

Reuse: Modules and Separate Compilation

append ->
 (relation 3)

Expander Environment (require mk/lists)
(run* (l1 l2)
 (append l1 l2 '(1 2)))

mk/tests/lists

append ->
 (relation 3)

(provide append)
(define-relation (append l1 l2 l3)
 …)

mk/lists

Expander Environment

Reuse: Modules and Separate Compilation

• Scope and binding work across languages
• DSL macros behave like host-language macros
• DSLs reuse host’s module system
• IDE understands DSL scope and binding

Benefits of reuse

Programmer
Expertise

Syntactic sugar

“Macro-embedded DSLs”:
embedded DSLs with macro syntax

“Hosted DSLs” with non-local
analysis and optimization

Language sophistication

Remaining problem: DSL expanders are low-level,
procedural, and demand deep understanding of
Racket’s macro system.

Declaring a language.

(define-variable-class lvar)
(define-variable-class relname)

(define-nonterminal term
 literal
 lvar
 (cons term term))

(define-nonterminal goal
 (== term term)
 (fresh (v:lvar ...+) g:goal)
 #:binding { (! v) g }
 (disj2 goal goal)
 (conj2 goal goal)
 (relname term ...+))

(define-variable-class lvar)
(define-variable-class relname)

(define-nonterminal term
 literal
 lvar
 (cons term term))

(define-nonterminal goal
 (== term term)
 (fresh (v:lvar ...+) g:goal)
 #:binding { (! v) g }
 (disj2 goal goal)
 (conj2 goal goal)
 (relname term ...+))

Binding specifications

(define-variable-class lvar)
(define-variable-class relname)

(define-extension-class goal-macro)

(define-nonterminal term
 (quote datum)
 literal
 lvar
 (cons term term))

(define-nonterminal goal
 #:allow-extension goal-macro
 (== term term)
 (fresh (lvar ...+) goal ...+)
 #:binding { (! lvar) goal }
 (disj goal ...+)
 (conj goal ...+)
 (relname term ...+))

Declaring extension points

Key goal: make simple, untyped languages easy.

How can we
• integrate type rules
• handle dependent binding structures

without making the common case complicated?

Programmer
Expertise

Syntactic sugar

“Macro-embedded DSLs”:
embedded DSLs with macro syntax

“Hosted DSLs” with non-local
analysis and optimization

Language sophistication

This talk:
▪Macro-embedding is easy and great for

simple DSLs and design exploration.
▪Custom DSL expanders and compilers enable

more sophisticated features, and can
integrate with the host via our new API.

▪ In progress: Declarative definition of
extensible hosted DSLs, using language
workbench ideas.

This talk:
▪Macro-embedding is easy and great for

simple DSLs and design exploration.
▪Custom DSL expanders and compilers enable

more sophisticated features, and can
integrate with the host via our new API.

▪ In progress: Declarative definition of
extensible hosted DSLs, using language
workbench ideas.

Questions?

Details of binding specification…

Binding specifications

(fresh (first rest result)
 (conj2
 (conj2
 (== (cons first rest) l1)
 (== (cons first result) l3))
 (append rest l2 result)))

Binding specifications

(fresh (v:lvar ...+) g:goal)
 #:binding { (! v) g }

(fresh (first rest result)
 (conj2
 (conj2
 (== (cons first rest) l1)
 (== (cons first result) l3))
 (append rest l2 result)))

Exported bindings

(match '(1 2 3)
 [(cons first (cons second tail))
 second]
 [_ (error)])

(define-nonterminal match-clause
 [p:pat e:racket-expr]
 #:binding { (! p) e })

Exported bindings

(match '(1 2 3)
 [(cons first (cons second tail))
 second]
 [_ (error)])

(define-nonterminal match-clause
 [p:pat e:racket-expr]
 #:binding { (! p) e })

(define-nonterminal pat
 literal
 v:pvar
 #:binding (^ v)
 (cons p1:pat p2:pat)
 #:binding (^ p1 p2))

Exported bindings

(match '(1 2 3)
 [(cons first (cons second tail))
 second]
 [_ (error)])

Mutually recursive bindings

(block
 (define f
 (lambda (x) (g x)))
 (define g
 (lambda (x) (f x)))
 (f 5))

Mutually recursive bindings

(define-nonterminal def-or-expr
 (define v:rlvar e:expr)
 #:binding (^ v)
 e:expr)

(block
 (define f
 (lambda (x) (g x)))
 (define g
 (lambda (x) (f x)))
 (f 5))

Mutually recursive bindings

(define-nonterminal def-or-expr
 (define v:rlvar e:expr)
 #:binding (^ v)
 e:expr)

(define-nonterminal expr
 …
 (block body:def-or-expr ...)
 #:binding { (! body) body })

(block
 (define f
 (lambda (x) (g x)))
 (define g
 (lambda (x) (f x)))
 (f 5))

	Title
	Extensible language + LOP
	Language mixing example 1
	Language mixing example 2
	Preview
	Programmer to DSL creator 1
	Sugar
	Sugar example 1
	Sugar example 2
	Sugar example 3
	Sugar example 4
	Sugar example 5
	Sugar example 6
	Sugar example 7
	Sugar example 8
	Sugar example 9
	Programmer to DSL creator 2
	Macro-embedded DSLs
	miniKanren example
	embedding 1
	embedding 2
	embedding 3
	embedding 4
	Consequences
	Mixing with host 1
	Mixing with host 2
	Extension via host macros
	Embedding recap
	Programmer to DSL creator 3
	Goals
	Goals 2
	Hosted DSLs
	Architecture idea
	Architecture 1
	Architecture 2
	Architecture 3
	Architecture 4
	mK grammar 1
	mK grammar 2
	mK grammar 3
	mK expansion and compilation 1
	mK expansion and compilation 2
	mK expansion and compilation 3
	What do we get out of DSL expanders?
	Integration 1
	Integration 2
	Integration 3
	Integration 4
	Reuse 1
	Reuse 2
	Scope
	Scope 1
	Scope 2
	Scope 3
	Scope 4
	Scope 5
	Hygiene 1
	Hygiene 2
	Hygiene 3
	Hygiene 4
	Hygiene 5
	Hygiene 6
	Hygiene 7
	Hygiene 8
	Hygiene 9
	API
	Break
	Expander environment 1
	Expander environment 2
	Separate compilation 1
	Separate compilation 2
	Benefits of reuse
	Programmer to DSL creator 4
	Problem: deep knowledge
	Declaring 1
	Declaring 2
	Declaring 3
	Type rules?
	Programmer to DSL creator 5
	Summary
	Questions
	Binding specs 1
	Binding specs 2
	Binding specs 3
	Binding specs 4
	Binding specs 5
	Binding specs 6
	Binding specs 7
	Binding specs 8
	Binding specs 9

